Tridymite

Orthorhombic  Images    

   
   
  Formula SiO2
  Optic class & sign Biaxial positive
  Optical orientation X = b, Y = a, Z = c
  Optical plane (100)
  Relief Moderate-negative
  Refractive indices nx = 1.471 -1.479
ny = 1.472 -1.480
nz = 1.474 -1.483
n increases with substitution of Al+Na for Si
  Birefringence   (max.)0.002  - 0.004
   
  Optic Angle 2Vx
2Vz = 35 - 90°
  Sign of elongation Length-fast, l(-)
  Interference figure Impractical due to very low Δn and small crystal size
  Colour /   pleochroism Colourless
  Zoning 

  Form  Habit Thin hexagonal plates, radiating aggregates, granular
  Surface Euhedral to anhedral
  Cleavage Poor
  Twinning {1016} in the original hexagonal form: three wedge-shaped segments (‘trillings’); other contact or penetration twins
  Extinction Straight to all principal crystal faces in prismatic sections; sections orthogonal to c: straight to {100} and symmetrical to {111} traces

  Reaction textures  Pseudomorphic replacement by fine-grained quartz
  Alteration /   decomposition -

  Occurence     Ign Silicic to intermediate volcanic and sub-volcanic rocks; less common in basalts; miarolitic cavities and vesicles
  Met Contact zones of mafic lavas and sub-intrusives, buchites, silica-rich xenoliths in basalts; pyrometamorphism of siliceous rocks caused by underground combustion of coal
  Sed 
  Hyd Precipitate from hydrothermal alteration of volcanics
  Other Stony meteorites

  Distinctive   properties               Pseudo-hexagonal habit, very low Δn, wedge-shaped twins, moderate-negative relief
  Additional   comments Commonly not preserved in rocks older than Tertiary. Low-temperature α-tridymite is commonly paramorphically converted from hexagonal β-tridymite (which is stable between 870 and 1470°C). α-tridymite has no stability field.